Saturday 1 October 2011

Soil Classification


Geotechnical engineers classify the soil particle types by performing tests on disturbed (dried, passed through sieves, and remolded) samples of the soil. This provides information about the characteristics of the soil grains themselves. It should be noted that classification of the types of grains present in a soil does not account for important effects of the structure or fabric of the soil, terms that describe compactness of the particles and patterns in the arrangement of particles in a load carrying framework as well as the pore size and pore fluid distributions.

Classification of soil grains

In the US and other countries, the Unified Soil Classification System (USCS)is often used for soil classification. Other classification systems include the British Standard BS5390 and the AASHTO soil classification system.

Classification of sands and gravels

In the USCS, gravels (given the symbol G) and sands (given the symbol S) are classified according to their grain size distribution. For the USCS, gravels may be given the classification symbol GW (well-graded gravel), GP (poorly graded gravel), GM (gravel with a large amount of silt), or GC (gravel with a large amount of clay). Likewise sands may be classified as being SW, SP, SM or SC. Sands and gravels with a small but non-negligible amount of fines (5 % - 12 %) may be given a dual classification such as SW-SC.

Atterberg Limits

Clays and Silts, often called 'fine-grained soils', are classified according to their Atterberg limits; the most commonly used Atterberg limits are the Liquid limit (denoted by LL or wl), Plastic Limit (denoted by PL or wp), and Shrinkage limit (denoted by SL). The shrinkage limit corresponds to a water content below which the soil will not shrink as it dries.
The liquid limit and plastic limit are arbitrary limits determined by tradition and convention. The liquid limit is determined by measuring the water content for which a groove closes after 25 blows in a standard test Alternatively, a fall cone test apparatus may be use to measure the liquid Limit. The undrained shear strength of remolded soil at the liquid limit is approximately 2 kPa. The plastic limit is the water content below which it is not possible to roll by hand the soil into 3 mm diameter cylinders. The soil cracks or breaks up as it is rolled down to this diameter. Remolded soil at the plastic limit is quite stiff, having an undrained shear strength of the order of about 200 kPa
The Plasticity index of a particular soil specimen is defined as the difference between the Liquid limit and the Plastic limit of the specimen; it is an indicator of how much water the soil particles in the specimen can absorb. The plasticity index is the difference in water contents between states when the soil is relatively soft and the soil is relatively brittle when molded by hand.

Classification of silts and clays

According to the Unified Soil Classification System (USCS), silts and clays are classified by plotting the values of their plasticity index and liquid limit on a plasticity chart. The A-Line on the chart separates clays (given the USCS symbol C) from silts (given the symbol M). LL=50% separates high plasticity soils (given the modifier symbol H) from low plasticity soils (given the modifier symbol L). A soil that plots above the A-line and has LL>50% would, for example, be classified as CH. Other possible classifications of silts and clays are ML, CL and MH. If the Atterberg limits plot in the"hatched" region on the graph near the origin, the soils are given the dual classification 'CL-ML'.

Indices related to soil strength

Liquidity Index

The effects of the water content on the strength of saturated remolded soils can be quantified by the use of the liquidity index, LI:
 LI = \frac{w-PL}{LL-PL}
When the LI is 1, remolded soil is at the liquid limit and it has an undrained shear strength of about 2 kPa. When the soil is at the plastic limit, the LI is 0 and the undrained shear strength is about 200 kPa

Relative density

The density of sands (cohesionless soils) is often characterized by the relative density, Dr
 D_r= \frac{e_{max} - e}{e_{max} - e_{min}} 100%
where: emax is the "maximum void ratio" corresponding to a very loose state, emin is the "minimum void ratio" corresponding to a very dense state and e is the in situ void ratio. Methods used to calculate relative density are defined in ASTM D4254-00(2006)
Thus if Dr = 100% the sand or gravel is very dense, and if Dr = 0% the soil is extremely loose and unstable.

No comments:

Post a Comment